

In vitro ADME & PK

MDCK-MDR1 Permeability Assay

Background Information

- 'Bidirectional assays evaluate whether an investigational drug is a substrate or inhibitor of efflux transporters such as P-gp or BCRP'
- ¹FDA Guidance for Industry
 In Vitro Metabolism- and
 Transporter-Mediated Drug-Drug
 Interaction Studies (January 2020)

- MDCK-MDR1 cells originate from transfection of Madin Darby canine kidney (MDCK) cells with the MDR1 gene (ABCB1), the gene encoding for the efflux protein, P-glycoprotein (P-gp)².
- Assessing transport in both directions (apical to basolateral (A-B) and basolateral to apical (B-A)) across the cell monolayer enables an efflux ratio to be determined which provides an indicator as to whether a compound undergoes active efflux (mediated by P-gp).
- MDCK-MDR1 helps to gain an understanding of the mechanism of drug efflux, and highlights early potential issues with drug permeability.
- In addition to intestinal permeability, MDCK-MDR1 permeability has also been found to be a useful predictor of blood brain barrier permeability.

Protocol

Test Article Concentration

 $10~\mu M$

Passage Number

6 - 30

Period of Cell Culture

4 days

Number of Replicates

2

Incubation Time

60 min

Temperature

37°C

Test Article Requirements

100 μ L of 10 mM DMSO solution

Integrity Marker

Lucifer Yellow

Analysis Method

LC-MS/MS quantification

Data Delivery

P_{app}
Efflux Ratio
% Recovery

By assessing the transport in both the apical to basolateral and basolateral to apical direction an efflux ratio can be calculated which indicates if the compound is a substrate of P-gp.

MDCK-MDR1 Permability

Cyprotex's MDCK-MDR1 permeability assay is able to identify compounds which are substrates of P-gp (See Figure 1) and distinguish between compounds which are CNS negative and CNS positive as shown in Table 1.

Table 1Classification of brain uptake using Cyprotex's MDCK-MDR1 permeability assay.

Drug	P _{app} A-B (x10 ⁻⁶ cm/s)	Brain Uptake Classification
Atenolol	0.204	CNS Negative ³
Methotrexate	0.234	CNS Negative ³
Ranitidine	0.369	CNS Negative ³
Vinblastine	0.521	CNS Negative ³
Cimetidine	0.522	CNS Negative ⁴
Sulfasalazine	0.535	CNS Negative ³
Quinidine	1.49	CNS Negative ³
Loperamide	1.82	CNS Negative ⁵
Minoxidil	2.77	CNS Negative ⁶
Flecainide	3.50	CNS Positive ⁷
Fluconazole	9.50	CNS Positive ⁸
Acetaminophen	17.4	CNS Positive ⁹
Desipramine	31.1	CNS Positive ³
Indomethacin	35.6	CNS Positive ³
Warfarin	40.7	CNS Positive ¹⁰
Chlorpromazine	53.4	CNS Positive ³
Propranolol	63.9	CNS Positive ¹¹
Carbamazepine	64.5	CNS Positive ³
Antipyrine	67.7	CNS Positive ³

Cyprotex's MDCK-MDR1 assay distinguishes between CNS positive and CNS negative compounds based on their $P_{\rm app}$ values.

Figure 1

Net flux ratio for a set of 20 compounds (calculated using the efflux ratios of the wild type and MDCK-MDR1 bidirectional assays).

By performing a bidirectional study in both the wild type and MDCK-MDR1 assay, the net flux ratio can be calculated to identify compounds which are substrates of human P-glycoprotein.

References

- ¹ FDA Guidance for Industry In Vitro Drug Interaction Studies Cytochrome P450 Enzyme- and Transporter-Mediated Drug Interactions (January 2020)
- ² Pastan I et al, (1988) Proc Natl Acad Sci USA **85**; 4486-4490
- Wang O et al, (2005) Int J Pharmaceut 288; 349-359
 Di L et al (2003) Eur J Med Chem 38; 223-232
- Seeling A et al, (1994) Proc Natl Acad Sci USA 91; 68-72
- ⁶ Thomas RC *et al.*, (1975) *J Pharm Sci* **64**; 1360-6
- ⁷ Piovan D et al, (1986) Pharmacol Res Commun **18**; 739-745
- ⁸ Yang H et al, (1996) Pharm Res **13**; 1570-5
- ⁹ Courad JP et al, (2001) Life Sci 69; 1455-64
- ¹⁰ Murakami H et al, (2000) Am J Physiol Heart Circ Physiol **279**; H1022-1028
- ¹¹ Liu X et al, (2004) Drug Metab Dispos **32**; 132-139