


# In vitro ADME

# **BCRP** Inhibition

# Background Information



"In vitro inhibition studies are recommended to investigate whether the investigational drug inhibits any of the transporters known to be involved in clinically relevant in vivo drug interactions"

<sup>5</sup>The European Medicines Agency (EMA) Guideline on the Investigation of Drug Interactions (Adopted 2012)

- BCRP (Breast Cancer Resistance Protein/ABCG2) is expressed in the gastrointestinal tract, liver, kidney, brain endothelium, mammary tissue, testis and placenta<sup>1</sup>.
- Inhibition of intestinal BCRP has shown to be responsible for several clinical drug-drug interactions involving specific statin common co-medications such as rosuvastatin and atorvastatin, resulting in their increased absorption and subsequent exposure (up to 2 fold increase in AUC)<sup>2,3</sup>
- The International Transporter
   Consortium<sup>1</sup>, the FDA guidance<sup>4</sup> and the
   EMA guideline<sup>5</sup> recommend investigating
   BCRP due to BCRP's clinical importance
   in the absorption and disposition of
   drugs
- Cyprotex use Caco-2 cells to identify BCRP inhibitors using a range of test inhibitor concentrations in the presence of the probe substrate estrone 3-sulfate, a good surrogate for the clinically relevant BCRP substrate rosuvastatin. This method conforms with the recommended methods within the International Transporter Consortium white paper<sup>1</sup>, the FDA drug interactions guidance<sup>4</sup> and the EMA drug interactions guideline<sup>5</sup>.

### **Protocol**

#### **Substrate**

1  $\mu$ M [ $^{9}$ H]-estrone 3-sulfate (surrogate *in vitro* probe for clinically relevant BCRP substrate rosuvastatin $^{7}$ )

# **Test Article Concentrations**

Seven point IC<sub>50</sub> (triplicate wells)

# Direction

Unidirectional (basolateral to apical)

# **Inhibitor Preincubation Time**

30 min

# **Incubation Time**

90 min

### **Growth Period**

18-22 days

#### Analysis Method

Liquid scintillation counting

#### **Integrity Marker**

Lucifer Yellow

### **Data Delivery**

IC<sub>50</sub> (derived from corrected B-A P<sub>ann</sub>)

'BCRP has been increasingly recognized for its important role in the absorption, elimination and tissue distribution of drugs and xenobiotics6.3

Table 1 Inhibition of BCRP-mediated estrone 3-sulfate transport by literature inhibitors.

| Inhibitor                        | Mean IC <sub>50</sub> ± Standard Deviation (n=3) |
|----------------------------------|--------------------------------------------------|
| Novobiocin<br>(positive control) | 2.06 ± 0.884                                     |
| Fumitremorgin C                  | 0.250 ± 0.0540                                   |
| Pantoprazole                     | 11.0 ± 0.737                                     |
| Elacridar                        | 0.581 ± 0.165                                    |

The Caco-2 cell test system using the BCRP substrate estrone 3-sulfate is able to correctly identify known literature BCRP inhibitors with a range of different potencies.

The incubation conditions have been fully characterised for our chosen BCRP substrate, estrone 3-sulfate, based on time linearity and chosen substrate concentration being approximately ten-times lower than the reported  $K_{\scriptscriptstyle m}$  previously determined in membrane vesicles  $^{7},$  and as such  $\overset{\cdots}{\text{IC}_{50}}$  equates to  $\text{K}_{_{\! 1}}$  (assuming competitive inhibition).

- <sup>1</sup> The International Transporter Consortium (2010) Nat Rev Drug Disc 9; 215–236
- <sup>2</sup> Elsby R et al., (2012) Clin Pharmacol Ther **92(5)**; 584-598
- <sup>3</sup> Elsby R et al., (2016) Drug Metab Dispos **44**; 398-408
- <sup>4</sup> FDA Guidance for Industry In Vitro Drug Interaction Studies Cytochrome P450 Enzyme- and Transporter-Mediated Drug Interactions (January 2020)
- The European Medicines Agency (EMA) Guideline on the Investigation of Drug Interactions (Adopted 2012)
  Zhanglin N et al., (2010) Curr Drug Metab 11(7); 603-617
- <sup>7</sup> Elsby R et al., (2011) Xenobiotica **41(9)**; 764-783

