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Abstract

With the introduction of omics-technologies such as transcriptomics and proteomics, numerous methods for the reliable
identification of significantly regulated features (genes, proteins, etc.) have been developed. Experimental practice requires
these tests to successfully deal with conditions such as small numbers of replicates, missing values, non-normally
distributed expression levels, and non-identical distributions of features. With the MeanRank test we aimed at developing a
test that performs robustly under these conditions, while favorably scaling with the number of replicates. The test proposed
here is a global one-sample location test, which is based on the mean ranks across replicates, and internally estimates and
controls the false discovery rate. Furthermore, missing data is accounted for without the need of imputation. In extensive
simulations comparing MeanRank to other frequently used methods, we found that it performs well with small and large
numbers of replicates, feature dependent variance between replicates, and variable regulation across features on simulation
data and a recent two-color microarray spike-in dataset. The tests were then used to identify significant changes in the
phosphoproteomes of cancer cells induced by the kinase inhibitors erlotinib and 3-MB-PP1 in two independently published
mass spectrometry-based studies. MeanRank outperformed the other global rank-based methods applied in this study.
Compared to the popular Significance Analysis of Microarrays and Linear Models for Microarray methods, MeanRank
performed similar or better. Furthermore, MeanRank exhibits more consistent behavior regarding the degree of regulation
and is robust against the choice of preprocessing methods. MeanRank does not require any imputation of missing values, is
easy to understand, and yields results that are easy to interpret. The software implementing the algorithm is freely available
for academic and commercial use.
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Introduction

Today, omics-technologies are capable of generating vast

amounts of data. Typical microarray experiments measure the

abundance of thousands of features. With recent advances in the

field of mass spectrometry (MS), over 10,000 proteins can

currently be measured in cell systems [1], while recent studies

identified even more phosphorylation sites through quantitative

phosphoproteomics [2–4].

Many of these microarray and proteomics studies include the

detection of differentially regulated features as core step in the data

analysis. For data with thousands of features, the false discovery

rate (FDR), defined as the expected number of false positive

features among those reported as significant, has to be controlled

[5]. However, strong control of the FDR reduces the rate of true

positive features (TPR) discovered. The problem is often

aggravated by experimental designs with small numbers of

replicates. Further complications arise from missing data, espe-

cially common in MS-based shot-gun proteomics experiments.

Microarray technologies often produce non-normally distributed

expression levels and non-identical distributions between genes

[6].

In principle, single-feature hypothesis tests like Student’s t-test

or the Wilcoxon rank-sum test can be applied to assess the

significance of each feature, if results are corrected for multiple

testing, e.g. by Benjamini-Hochberg (BH) [7] or the family-wise

error rate (FWER) [8] procedures. However, when applied to data

with only few replicates, these approaches are lacking statistical

power, due to difficulties in estimating variance. Tusher et al.
developed the Significance Analysis of Microarrays (SAM) [9], a

more sophisticated method based on a modification of the t-
statistic. The FDR is controlled by a permutation-based approach

and adjusted using an estimate of the fraction of truly unregulated

features. Moreover, SAM employs k-nearest-neighbor (k-NN)

imputation to replace missing data. A similar approach is taken by

empirical Bayes methods. Linear Models of Microarrays

(LIMMA), for example, uses a moderated t-statistics, in which

the estimated sample variance is shrunk towards a pooled estimate

across all features [6].

Recently, methods applying a global approach, rather than

determining significance on a feature-by-feature basis, were
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proposed. These methods take into account the entire dataset at

once and thus avoid the difficult task of estimating the variance of

each feature. Zhou et al. proposed a rank-based, global one-

sample location test, which performs very well for small numbers

of replicates and internally controls the FDR [10]. However, this

global rank test requires features to consistently rank high or low

across all replicates. The RankProducts test [11] is based on a

similar global approach, but the ranks of each feature are

multiplied. The FDR is then estimated numerically using random

rank matrices.

The MeanRank test presented here borrows concepts of the

GlobalRank and RankProducts tests, but uses a different test

statistics and a different method for estimating the null-distribu-

tion. In the following, we describe the concept of MeanRank,

including its handling of missing data. While we focus on the one-

sample case in the main text, extensions to the two-sample case are

discussed in File S1. The one-sample location test problem is

equivalent to the paired-difference test problem for dependent

samples. Paired samples are very common in proteomics

experiments, which often apply labeling methods such as SILAC

or iTRAQ, but also in transcriptomics (e.g. two-color microarray).

We then present an extensive simulation study, in which the

performance of MeanRank is compared to the previously

mentioned tests, the t-test, and the Wilcoxon signed-rank test. In

order to demonstrate the value of MeanRank, it is compared to

SAM and LIMMA on the ‘Ag-Spike’ two-color microarray spike-

in data set recently published by Zhu et al. [12]. Finally,

MeanRank and SAM are applied to datasets of two published

phosphoproteomics-studies.

Results and Discussion

Simulated data
In order to evaluate the performance of the MeanRank test and

to compared it with various other tests, we performed an extensive

simulation study extending the range of scenarios found in

comparable publications [10,13,14] by including more parameters

and wider ranges of replicates and methods. The advantage of

simulations is that underlying statistical properties are known and,

thus, the performance of different hypothesis tests can be

compared under various conditions. In the first set of simulations

we assessed the performance of the one-sample location tests for

different sampling distribution parameters. Simulation parameters

were strength of regulation (D), within-feature variance (s2) – both

of which were either held constant or chosen to be variable – and

the presence of missing values. These parameters were combined

to generate different simulation scenarios. We calculated the

performance for an increasing number of replicates for the

respective scenarios. The parameters were deliberately chosen to

simulate experiments with hard-to-identify regulated features to

investigate the added power over a wide range of additional

replicates. With the chosen settings, a true positive rate (TPR) of

1.0 should not be achieved easily.

The simplest simulation setting assumes a constant variance and

strength of regulation. Figure 1A shows TPR and FDR achieved

by the tests when 3,600 unregulated features were sampled with

constant s2 ~ 0:01 and 400 regulated features were sampled with

a constant shift D~0:2. The leading method in this setting is

LIMMA, followed closely by SAM, and then the non-parametric

MeanRank (MR). This top-group clearly outperforms the other

methods. The parametric MeanRank test (MR.par) has a

somewhat lower power for data with less than five replicates in

this specific simulation setting. The power of the GlobalRank tests

(GR and GR.par) does not scale with the number of replicates, but

reaches its maximum performance at nine replicates. Additional

replicates will even lead to a loss in power. This behavior is

expected, because with a growing number of replicates it becomes

less likely for a regulated feature to consistently rank top or

bottom. Similar to the parametric MeanRank (MR.par), the

parametric GlobalRank (GR.par) is less powerful than its non-

parametric counterpart for less than five replicates. In contrast to

the GlobalRank, the power of the RankProducts (RP) scales well

with the number of replicates, but it is less powerful for

experiments with small number of replicates. The TPR curves of

GlobalRank and RankProducts underline the initial motivation of

developing the MeanRank test, i.e. combining the strengths of

both tests without inheriting their shortcomings. The t-test shows

significant lower TPR, most likely due to variance estimation

issues, especially evident at very small number of replicates. As an

example of a non-parametric, rank-based test that does not belong

to the class of global approaches, we included the Wilcoxon

signed-rank test. Because of the discreteness of the test statistics, it

is not surprising that a minimum of nine replicates is required to

identify any significantly regulated feature after multiple hypoth-

esis testing correction. For eleven or more replicates the TPR

approaches the TPR of the other tests beside the GlobalRank tests.

All tests correctly control the FDR at the pre-specified level of

0.05.

Next, we investigated the scenario with feature dependent

variable variance, which is frequently observed in omics data due

to the dependence of the variance on the signal intensity [15].

Overall the tests display a similar behavior as in simulations with

constant variance (Fig. 1B). However, while the overall TPR is

slightly lower for most tests with variable s2, the parametric

MeanRank and GlobalRank tests seem to be largely unaffected.

Thus, the discrepancy between the parametric and non-paramet-

ric versions, which was observed for small number of replicates,

disappears. Furthermore, MeanRank has a slightly higher overall

TPR than SAM or LIMMA under these simulation conditions.

The small gain in power for the t-test results from features with

small variance caused by the variable s2 setting.

We then combined the variable variance s2 with a variable

regulation strength D, reflecting the complex response of systems

to perturbations, e.g. of cells to drug treatment. There is a further

loss in power across all tests, since some of the regulated features

are hidden in the background noise (Fig. 1C). The parametric

MeanRank performs best across all replicate numbers. The non-

parametric MeanRank, SAM and LIMMA, exhibit comparable

but slightly reduced power. In general, the behavior of all tests is

similar to the previous simulation (Fig. 1B).

When using heavy-tailed distributions, such as a t-distribution,

SAM and MeanRank exhibit similar power until up to seven

replicates. However, while MeanRank progresses to a TPR of 1.0

for 15 replicates, SAM has by then just reached TPR 0.8 and

almost levels off. (Fig. 1D). The power of LIMMA is considerably

reduced compared to the previous scenarios and is comparable to

the power of the t-test. The GlobalRank shows particular

problems with this setting, achieving a TPR of merely 0.4, before

starting to drop. The RankProducts even falls behind the t-test for

less than nine replicates.

Missing data are common in technologies such as MS-based

shotgun proteomics, thus in the next set of simulations we

introduced missing values combined with variable variance s2

(Fig. 1E). It should be noted, that SAM is the only method used

that does not handle missing data intrinsically. Instead, it employs

a k-NN imputation prior to the actual significance analysis. In

terms of power, parametric and non-parametric MeanRank

together with SAM and LIMMA delivered the best results. For

Mean Rank Test
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small numbers of replicates, the power of GlobalRank was

comparable to that of MeanRank and SAM. However, SAM

and the parametric GlobalRank systematically underestimated the

FDR.

We additionally simulated the effect of missing values on data

with both variable variance s2 and shift D (Figure 1F). Here, the

parametric and non-parametric MeanRank, SAM and LIMMA

perform best with respect to the TPR. As in the previous scenario,

SAM always underestimated the FDR considerably. In order to

Figure 1. Performance on simulated data. Performance plot of one-sample significance tests under different simulation settings. Traces show
the true positive rate (TPR) of the respective tests for a given number of replicates. Bars at bottom denote the false discovery rate (FDR). TPR and FDR
are averaged over ten independent simulations. All tests were set to control the FDR at 0.05.
doi:10.1371/journal.pone.0104504.g001

Mean Rank Test
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investigate whether the violations of FDR threshold observed for

SAM were due to imputation, we also applied the other tests to the

imputed data (see Figure S1). This resulted in similar behavior: a

general violation of the FDR threshold, accompanied by a slightly

higher TPR. Although it can be argued, that this is not a problem

of SAM per se, the inability of handling missing data makes

imputation inevitable.

Zhou et al. [10] stated that, in contrast to single-feature analysis

methods, large numbers of features are advantageous for global

methods and will lead to increased statistical power. We tested

whether this applies to MeanRank, by altering the proportion of

regulated and background features for a constant number of six

replicates (see Figure S2). The hypothesis was confirmed, revealing

that the rank-based tests (MeanRank, GlobalRank, and RankPro-

ducts) possess more power when the proportion of regulated to

background features is small. The opposite is true for the single-

feature-based tests, such as t-test, SAM and LIMMA. Despite

experiencing a loss of power over an increasing fraction of

regulated features, MeanRank always met the desired FDR

threshold, while GlobalRank increasingly violated this threshold.

The simulations show that the parametric MeanRank generally

had a higher power than the non-parametric version. Thus, we

only used the parametric test in the following real data

experiments. In the following, we applied parametric MeanRank,

SAM and LIMMA, i.e. the tests showing the best performance in

the above simulations, to microarray spike-in data and finally to

real experimental datasets, for which, of course, the identity of

truly regulated features is not known. However, since we showed

that all tests with exception of SAM meet the pre-specified FDR in

a series of different simulation scenarios, we can judge the

performance of the test by evaluating the number of regulated

features identified.

Microarray spike-in data
Spike-in datasets are well-suited for the comparison of

significance analysis methods, since the identity of truly regulated

features is known before-hand. Here, we used the Agilent two-

color microarray spike-in dataset (‘Ag-Spike’) consisting of 1300

differentially expressed and 2500 background cRNAs across 12

replicates [12]. In their study the authors explored different

combinations of preprocessing methods (background correction,

within-, between-array normalization) in order to identify optimal

preprocessing routes for the detection of differentially expressed

genes using LIMMA. We used the published preprocessed data to

compare performance of the parametric MeanRank test with that

of SAM and LIMMA. Figure 2 shows the true positive and false

discovery rates of the three methods on the differently prepro-

cessed spike-in data. Most notably, the rank-based approach of

MeanRank is very robust against changes in preprocessing:

CVTPR = 0.04% and CVFDR = 0.75% compared to SAM

(CVTPR = 0.21%, CVFDR = 5.02%) or LIMMA (CVTPR = 0.54%

and CVFDR = 6.02%). Slight variation is still introduced by

methods applying local corrections, thus causing rank alterations

(e.g. normalization loess). MeanRank on average identifies 2691

positives, 2354 (87%) of which are identified in all twelve

preprocessing scenarios. The number of positives identified by

SAM (4119) and LIMMA (3246) are higher on average, but clearly

more dependent on the preprocessing protocol, with the number

of constantly identified features being 2413 (59%) and 1989 (61%),

respectively. This behavior is in line with the observations of Zhu

et al., who in a prior study found that the preprocessing protocol

has a great impact on the performance of methods for detection of

differentially expressed features [16]. The power of MeanRank is

comparable to that of SAM and LIMMA, when none or only

minimal efforts of normalization are made. Additional prepro-

cessing steps result in greater power for SAM and LIMMA,

however at the cost of an under estimated FDR. Zhu et al. found

that a combination of background correction by normexp and

within-array normalization using loess yields the best result. This

measure looks at the true positive and corresponding false positive

rates given the absolute value of the test statistic. Hence, the

correct estimation of the FDR is not taken into account. Figure 3

shows volcano plots of the normexp-corrected and loess-normalized

spike-in data and highlights differentially expressed features as

identified by the different tests. The column-like structure of data

points on the x-axis reflects the levels of spike-in (see Figure S3).

The largest column centered at zero contains features not

regulated. SAM and LIMMA, in contrast to the MeanRank test,

tend to produce more false positives as the feature variance

decreases.

Phosphoproteomics data of erlotinib-treated AML cells
We applied MeanRank, SAM and LIMMA to phosphopro-

teomics data published by Weber et al. [17]. The authors of that

study performed SILAC-based, large-scale, quantitative mass

spectrometry analyses of KG1 acute myeloid leukemia cells

treated with the small molecule tyrosine-kinase inhibitor erlotinib,

which mainly targets the epidermal growth factor receptor (EGFR).

In their subsequent significance analysis of ratios of erlotinib versus
control treatment the authors applied the RankProducts test to

identify 33 significantly (FDR 0.05) regulated class-I sites (i.e.

phosphorylation sites identified with high confidence). Prior to

testing, ratios of class-I sites were log10-transformed and subjected

to sample-wise median normalization (cf. [18]). The MeanRank

test yielded 57 significantly regulated phosphorylation sites at FDR

0.05, including 24 of the 33 sites published by Weber et al. (Fig. 4,

File S2). Of the remaining 9 sites, 8 had a local FDR smaller than

0.07, thus missing the significance criterion only marginally. 27 of

the additional 33 sites identified by MeanRank had a missing ratio,

emphasizing the tolerance of the test towards incomplete data.

SAM identified only 5 sites as significantly regulated, while

LIMMA did not identify any significantly regulated phosphory-

lation sites at all. The sites newly identified by MeanRank are

located on 29 different proteins. Most of these proteins are

annotated as being involved in the cell surface receptor signaling
pathway (GO:0007166). Weber et al. further found that most site-

specific repression of phosphoserines by erlotinib occurred on

proteins involved in mRNA translation control. Supporting this

finding, the MeanRank test also identified several transcription

factors (GTF2B, GTF2F1, GTF3C1, DEAF1, and TCF12) to be

significantly regulated upon treatment. In addition, we identified 6

additional phosphotyrosines sites. As the primary targets of

erlotinib are tyrosine kinases, this significant relative enrichment

(Fisher’s exact test p,9.5?1026) compared to the proportion of

phosphotyrosins in the full dataset supports the findings of

MeanRank. One of the sites that has not been identified as

significantly regulated in the original paper is Tyr427 on the SHC-

transforming protein 1 (Shc1). Tyr427 is phosphorylated in-vitro
by Src kinase and in-vivo in EGF-stimulated cells [19].

Phosphorylated Shc1 forms a complex with Grb2 which in turn

activates Ras signaling [20]. By down-regulation of Tyr427 on

Shc1, erlotinib treatment inhibits the transmission of growth

signals to the Ras signaling cascade.

Phosphoproteomics data upon reactivation of Plk1
We investigated the behavior of MeanRank and SAM on data

from a second phosphoproteomics study. Here, telomerase-

expressing human retinal pigment epithelial (hTERT-RPE) cells

Mean Rank Test
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expressing an analog-sensitive Plk1 mutant (Plk1as) were treated

with the bulky kinase inhibitor 3-MB-PP1 [21]. 3-MB-PP1 inhibits

the mutant kinase Plk1as harboring an enlarged catalytic pocket,

but not wild-type Plk1. This allowed the investigation of

downstream effects upon Plk1 reactivation by inhibitor wash-out.

The dataset contained four biological replicates with a total of

around 20,000 identified phosphorylation sites. In this analysis, we

considered only sites with values present in all four replicates in

order to avoid having to impute data for SAM analysis. This left

around 5,200 phosphosites to be tested for significant regulation

upon inhibitor wash-out. Since SAM requires proper pre-

processing, the data were log10-transformed and median normal-

ized (cf. [18]).

While MeanRank identified 313 significantly regulated phos-

phorylation sites (FDR 0.05), SAM reported a slightly higher

number of 359 significant sites for the same FDR level (File S3).

The overlap of the reported significant features was 249. SAM

identified more significantly up-regulated features than Mean-

Rank, most of which exhibit low variance and low mean

regulation (Fig. 5). SAM found 152 sites that were less than 1.5-

fold up-regulated on a linear scale; MeanRank only 45. In

contrast, SAM found only 8 sites that were less than 1.5-fold

Figure 2. Performance on spike-in data. Performance comparison of MeanRank (red), SAM (brown), and LIMMA (cyan) on the ‘Ag-Spike’
microarray dataset [12]. TPR and FDR shown by lines and bars, respectively. Different combinations of preprocessing investigated by the authors of
the original study are shown on the x-axis.
doi:10.1371/journal.pone.0104504.g002

Mean Rank Test
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down-regulated (linear scale), while MeanRank reported 61.

MeanRank draws a more consistent threshold between signifi-

cantly up-, and down-regulated features than SAM.

LIMMA reports 229 significantly regulated phosphorylation

sites, 225 are also identified by MeanRank. Similar to MeanRank,

LIMMA mainly reports sites with mean regulation stronger than

61.5-fold on a linear scale. Only 23 sites with down-regulation of

less than 1.5-fold and 18 with an up-regulation of larger than 1.5-

fold are reported.

Generally, it appears that SAM puts more emphasis on variance

and MeanRank more emphasis on the level of regulation. This is

reflected in the shape of the region within the volcanoplot, in

Figure 3. Volcano plot of spike-in data. Volcano plot of the ‘Ag-Spike’ data, background corrected by normexp and normalized with loess. This
combination of preprocessing steps was found to deliver the best performance by the authors of the original study [12]. Genes are represented as
points. Non-differentially expressed genes are scattered around Mean = 0 on the x-axis. Differentially expressed genes, as identified by the respective
methods are colored.
doi:10.1371/journal.pone.0104504.g003

Figure 4. Volcano plot of AML data. Volcano plot of the phosphoproteomic data published by Weber et al. [17]. Significantly regulated
phosphorylation sites are shown by colored circles as identified by SAM (left), the MeanRank test (right center), and in the original study (right).
doi:10.1371/journal.pone.0104504.g004

Mean Rank Test
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which the significant features are located (Fig. 5): While the

significantly regulated features identified by MeanRank can be

separated from the background features almost by a straight line,

those identified by SAM exhibit a rather curved threshold line.

LIMMA behaved similar to MeanRank, however identifying

slightly less significantly regulated sites. Since the simulation study

suggests that both tests comply with the pre-specified FDR level

when applied to four-replicate experiments, it can be argued that

at least 95% of the phosphosites reported as being significantly

regulated by either test are in fact true positives. While all three

tests perform well and have a high overlap, either might be more

suitable depending on the application.

Two-sample test
Established methods such as SAM and LIMMA support two-

sample comparison experiments. The MeanRank test can be

extended to accommodate two-sample comparisons by basically

transforming the two-sample into a one-sample problem. To do

so, we create a difference matrix by calculating the difference of

each possible pair from both groups. Here we assume that the data

is log-transformed. The calculations of the mean ranks is then

performed on the difference matrix in the same way as for the one-

sample test. Since the columns of the difference matrix are not

independent anymore, the dependency structure has to be taken

into account when estimating the null distribution. We found that

although the test generally performs well in terms of power

compared to SAM for most cases in our simulations and spike-in

microarray data [16] while reliably controlling the FDR, it is very

conservative when applied to data with missing values. This can be

explained by the way the difference matrix approach exaggerates

the relative amount of missing values. The method and simulation

setup is described in detail File S1 (see also Fig. S4 in File S1).

Conclusions

The simulations showed that borrowing traits from both the

GlobalRank and RankProducts methods strongly improved the

power over either of the two tests in all simulated scenarios, while

reliably estimating the FDR. All three tests are rank-based and use

a global approach rather than testing feature-by-feature. The main

differences of the MeanRank test compared to the other two tests

are the test statistics and the methods for estimating the

distribution under the null-hypothesis. We showed that this

improves the power of the test with respect to the RankProducts

test for low number of replicates and avoids a drop in power with

increasing number of replicates in the case of the GlobalRank test.

While single-feature-based non-parametric tests, such as the

Wilcoxon rank-sum or signed-rank tests, require nine or more

replicates in order to identify any significant regulated feature at

all, this is not the case for global rank-based tests. The fixed s2

simulations showed, that the non-parametric MeanRank test

identifies more than 60% of the true positives for three replicates.

The parametric and non-parametric MeanRank tests per-

formed comparably to SAM and LIMMA in most simulation

scenarios. While SAM and LIMMA performed slightly better in

the case of fixed s2 simulations, MeanRank had a slightly higher

power in the cases with variable s2 and both variable s2 and D.

When introducing missing data, our simulations suggest that

SAM tends to underestimate the FDR, since missing values have

to be imputed. This naturally raises concerns when applying SAM

– and thus imputation – to data resulting from technologies like

MS-based shotgun proteomics, regularly producing missing values.

The matter is further complicated by the fact that different

imputation methods (k-nearest-neighbor, singular value decom-

position, multiple imputation, etc.) can deliver deviating results

Figure 5. Volcano plot of Plk1-kinase-inhibited cells data. Volcano plot of the phosphoproteomic data of cells treated with an Plk1 tyrosine
kinase inhibitor versus control [21]. Significantly regulated phosphorylation sites shown in colored circles as identified by MeanRank test, SAM, LIMMA
(from left). The two rightmost volcano plots shows differences in detected phosphorylation sites by MeanRank/SAM and MeanRank/LIMMA.
doi:10.1371/journal.pone.0104504.g005

Mean Rank Test
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[22]. These aspects have to be considered, when applying SAM to

data with missing values, while the MeanRank test offers a

convenient way to entirely avoid imputation. However if, under

certain conditions, imputation delivered results close to the ground

truth, the power of any test would increase. A distinct advantage of

the MeanRank test lies in the decoupling of significance testing

and imputation procedures, leaving the freedom of choice with the

researcher. If the data were not normally distributed but followed

a heavy-tailed distribution such as the t-distribution with few

degrees of freedom, the one-sample MeanRank test showed a

better performance than SAM and in particular LIMMA,

especially for experiments with many replicates.

The global nature of the MeanRank test leads to a loss in power

when a very large fraction of features is truly regulated. However,

several studies suggest that the fraction of differentially regulated

features is often lower than 10% [17,21]. In fact, given such

experiments, our simulations show that the MeanRank test has an

advantage over single-feature-based tests like SAM and LIMMA.

A notable practical advantage of MeanRank over other methods

such as SAM is that normalization of samples is not necessary due

to its rank-based nature. This is advantageous because normali-

zation can have a direct influence on the results, as was

demonstrated by our comparison based in the ‘Ag-Spike’ data.

Here, MeanRank, in contrast to SAM or LIMMA, produced very

stable results, independent of the preprocessing steps applied.

SAM attempts to determine the proportion p0 of true null

hypotheses in the dataset in order to adjust the false discovery rate

[5]. This usually leads to more positive calls; however, the

estimation of p0 is not robust against small variations in the data

and depends strongly on the preprocessing applied. Since the FDR

estimation of the MeanRank test is rather conservative, an

implementation of a similar estimation could help to further

improve the test with respect to statistical power. However, we

deliberately omitted p0 estimation because of the described

inconsistent behavior also seen in other studies [23].

In summary, the key advantages of the MeanRank test

compared to other tests are: a comparable or even superior power

in detecting regulated features without underestimation of the

FDR, the possibility to analyze data with missing values without

the necessity for imputation; the robustness with respect to

preprocessing. Although we focused on the one-sample test in the

main text, a two-sample version of the test is also available and

described in File S1. One-sample location tests are particular

important for the analysis of proteomics data which often uses

labeling methods such as SILAC or iTRAQ, but also for the

analysis of two-color microarrays. Furthermore, they can be

applied to paired two-sample test problems emerging, for example,

if matched tumor and normal tissues are measured across many

patients. The MeanRank test is not limited to testing the

significance of gene- or protein regulation. As no strong

assumptions about the underlying distributions are made for the

non-parametric test, inference about statistically significant differ-

ences between groups could, in principle, be made for any kind of

ordinal features. Furthermore, MeanRank is freely available and

can be used by anyone without any restrictions, whereas SAM is

patented and requires proper licensing. For most experiments,

running the MeanRank test is a matter of seconds, and can be

performed on standard computers (see Table S1).

Finally, we would like to emphasize the intuitiveness of our test.

MeanRank is easy to understand, easy to implement, does not

require any parameter optimization and yields results that are easy

to interpret.

Materials and Methods

MeanRank test
Given a matrix M of R columns (replicates) and N rows

(features, e.g. genes, proteins, phosphorylation sites). Let Mif be

the value of feature f (with f ~ 1, :::, N) in replicate i (with

i~ 1, :::, R). Based on this matrix M, for each replicate i the

ranks ri f of each feature f within this replicate and across all

features can be determined by sorting the values in each replicate.

This is in contrast to the Wilcoxon signed-rank test, for which the

ranks are calculated across the replicates. Then the mean rank is

calculated for each feature across all replicates. Similar to the

approach of Zhou et al., [10], the mean rank statistic is motivated

by the random ordering theorem, i.e. under the null hypothesis H0

that no feature is either up- or down-regulated, it is very unlikely

that a feature ranks consistently high or low across all replicates.

Therefore no extreme (very large or very small) mean rank values

can be expected. In contrast to Zhou et al., who require features to

rank top or bottom consistently across all replicates, the mean rank

statistic may tolerate some moderate outliers.

For simplicity, we will focus on the detection of significantly

down-regulated features in the following, but the same approach is

applicable for up-regulated features by simply switching the signs

of all values. The mean rank test proceeds in these steps:

1. Sort features ascendingly by their values within each replicate

2. Calculate mean rank as

�rrf ~

PR
i~1 ri f

R
ð1Þ

3. Sort values �rrf ascendingly (�rr�f ) and identify the top n as

significantly down-regulated

In case of tied ranks, the values are left in the original order,

receiving ascending ranks. The list of significantly regulated

features depends on the value of n, which has to be chosen to meet

the specified FDR. The FDR is defined as the expected fraction of

false positives among the reported positives. Following the

approach of Zhou et al. [10], we denote a0 (n) the expected

number of false positives among the top n features. The FDR is

thus

FDR(n)~
a0(n)

n
: ð2Þ

As the true form of the null distribution is not known, we have

to estimate a null distribution either parametrically or non-

parametrically. For a parametric estimate, we assume that the

mean ranks of the null distribution follow a Bates distribution, i.e.

the distribution of the mean of statistically independent uniformly

distributed random variables. The cumulative distribution func-

tion is defined as:

FBates(m, x)~
1

2m!

Xm

k~0

({1)k m

k

� �
(mx{k)msgn(mx{k) ð3Þ

where m is the number of random variables and x is the mean of

the random variables scaled to the interval (0, 1), and sgn(a) is 21

for av 0, 0 for a~ 0, and 1 for aw 0. The expected number of

false positives is then calculated as:

Mean Rank Test
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a0(n)~FBates R,
�rr�n
N

� �
:N ð4Þ

Non-parametric estimation of a0 (n) follows Zhou et al.,
assuming a non-regulated feature has the same probability of

ranking top or bottom [10]. Thus, the null distribution is

independent of whether the features are sorted in ascending or

descending order, or – analogously – whether the features values

have a positive or negative sign. Consequently, a0 (n) can be

estimated by alternately flipping the signs of the ratios of the

replicates, calculating the flipped mean ranks �rrflipped on this flipped

data, and counting the number of values in �rrflippedv �rrn
� (see

pseudo-code in File S1).

Missing data
To account for missing data values, which are especially

common in MS-based proteomics experiments, the equation in

step (2) of the algorithm has to be modified to

�rrf ~

PR
i~1 rif

R̂Rf

, ð5Þ

where R̂Rf is the number of present data values of the respective

feature and rif ~ 0 if the value is missing. It has to be ensured that

missing values are not considered in the ranking process and

consequently do not receive a rank (they are ignored completely).

The FDR estimation has to be modified as well, as there are now

features with different numbers of data values in the dataset. Thus,

the parametric estimation of false positives has to be modified to

a0(n)~
XR

i~1

FBates i,
r�n
N

� �
:Ni ð6Þ

where Ni is the number of features with i data values present. The

non-parametric estimation of a0 (n) remains largely unchanged,

however, one has to ensure that features unaffected by sign-

flipping are excluded. This occurs when sign-flipping is by chance

applied only to values that are missing. The resulting feature

would be unchanged and receive the same ranks and subsequently

mean rank, after flipping.

Simulations
Artificial data was generated by sampling from various

distributions. The background distribution (unregulated data)

containing 3600 features was drawn from a normal distribution

with zero mean (m~0) and standard deviation s~0:1; 400

regulated features (80 up- and 320 down-regulated) were sampled

from normal distributions with shifted means (shift D~0:2). We

investigated the performance with an increasing number of

replicates (3 to 15). The described settings were then altered to

simulate variable variance by drawing s from a uniform

distribution s*U(0:05, 0:25) ) in combination with constant

regulation strength between features (D~0:3) and variable

regulation D*U( 0:2, 0:4). Missing data were introduced by

randomly discarding 20% of data points while ensuring that at

least two thirds of the data points were present for each feature. In

simulations of non-normal data we sampled features from a t-
distribution with two degrees of freedom. Whenever imputation of

missing values was applied, the k-nearest neighbor (k = 10) method

was used.

Significance analyses by RankProducts, SAM and LIMMA

were performed using the RankProd [24], samr, and limma
packages of Bionconductor [25] for R [26], respectively. The

global rank method by Zhou et al. [10] was implemented by the

authors. t-test and Wilcoxon signed-rank test p-values were BH

corrected for multiple hypothesis testing [7].

Supporting Information

Figure S1 Performance on simulated data using impu-
tation. Performance plot of tests for one-sample simulation data

with missing data imputed by k-nearest-neighbor (k-NN) with

k = 10.

(TIF)

Figure S2 Performance for different fractions of regu-
lated and unregulated features. Performance with fixed

number of replicates (R = 6), over a varying fraction of regulated

features to background features.

(TIF)

Figure S3 Volcano plot highlighting spike-in concentra-
tions. Volcano plot of the ‘Ag-Spike’ data, colored by fold-change

of spike-in.

(TIF)

Table S1 Computational performance of the MeanRank
test. Computation time and memory usage shown in seconds and

megabytes, respectively. Measurements were performed on a

single core of an Intel i5 2400, with 3.1 GHz.

(PDF)

File S1 Additional information on the MeanRank test.
Pseudo-code for the one-sample variant, and methods and

simulation results for the two-sample variant of the MeanRank

test.

(PDF)

File S2 Significance testing results of AML data pub-
lished by Weber et al. Data originally published by Weber

et al. [17] with additional significance testing performed using the

parametric MeanRank test, SAM and LIMMA.

(TXT)

File S3 Significance testing results of Plk1 data pub-
lished by Oppermann et al. Data originally published by

Oppermann et al. [21] with additional significance testing

performed using the parametric MeanRank test, SAM and

LIMMA.

(TXT)
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