PRROtect
Lessons from COVID-19
Building a unique pandemic Preparedness and Rapid Response TECHNOLOGY Platform
Viral pandemics are a permanent threat

>10 pathogenic viruses have emerged in the last century, many more are being identified
The next pandemic threats are known – the need to act is today

Clear WHO recommendation on which viruses to target – and why

1. **Coronaviruses**
 - 3 strains on WHO priority list of greatest public health risks
 - Strains in bat populations capable of infecting humans

2. **Influenza viruses**
 - 4 strains of high risk to enduce pandemics are under surveillance
 - More agents needed to combat resistance, and pandemic strains

3. **Crimean-Congo-Haemorrhagic Fever (CCHF)**
 - Endemic in Africa, Balcans, Middel-East and Asia
 - No approved treatment

4. **Nipah viruses**
 - Human-to-human and animal-to-human transmission
 - No vaccines or treatments

5. **Lassa viruses**
 - Acute viral haemorrhagic illness
 - Animal-to-human, and human-to-human transmission

6. **Additional Data**
 - 84m infections/year
 - 1.8m deaths/year
 - 3-5m infections/year
 - 290k-650k deaths/year
 - Up to 15k each year
 - Fatality rate up to 30%
 - 18 outbreaks since 1998
 - Fatality rate 40-75%
 - 100k-300k infections/year
 - 5k deaths/year

References:

Four key challenges to developing better therapeutics

Integrated approach including inter-pandemic Preparedness and Rapid Response needed

<table>
<thead>
<tr>
<th>Challenge</th>
<th>Threat</th>
<th>Solutions</th>
</tr>
</thead>
<tbody>
<tr>
<td>#1 Timelines</td>
<td>• Development time for novel therapeutic drugs during pandemic too long</td>
<td>• Pre-develop first-in-class therapeutics to phase II-readiness</td>
</tr>
<tr>
<td>#2 Efficacy</td>
<td>• Repurposed therapeutics show limited impact on survival rates</td>
<td>• Develop therapeutics for pre-selected virus classes and with novel mechanism-of-action</td>
</tr>
<tr>
<td></td>
<td>• Escape variants reduce efficacy of therapeutics</td>
<td></td>
</tr>
<tr>
<td>#3 Product profile</td>
<td>• Approved antibodies have unattractive product profile</td>
<td>• Improve antibody product profile</td>
</tr>
<tr>
<td></td>
<td>• Existing immuno-modulators are insufficient</td>
<td>• Develop novel classes of immuno-modulators</td>
</tr>
<tr>
<td>#4 Availability</td>
<td>• Increased demand for antibody development and production capacity and platforms</td>
<td>• Build flexible, low-cost antibody manufacturing solutions</td>
</tr>
</tbody>
</table>
Three-pronged approach provides optimised protection
Preparation/Pre-development, Rapid Response and Manufacturing capacity

The three important axes of prevention

Preparation / Pre-development
- Development of therapeutics against high-risk viruses\(^1,2\)
- Rapid employment due to pre-development to Phase II-readiness

Rapid Response
- Cutting-edge antibody design provides highly effective antibodies
- New technologies shorten time of development of neutralising antibodies from outbreak to six months

Flexible manufacturing capacity for antibodies, e.g. J.POD®
- Highly efficient antibody manufacturing
- Three months of manufacturing to protect ~2 m medical professionals against a disease

Pre-development of new therapeutics saves up to 5 years
New mode-of-actions against high-risk virus\(^1\) \(^2\) pursued by Evotec and future partners

Utilise full suite of modalities for early therapy

<table>
<thead>
<tr>
<th>Small molecules and degraders</th>
<th>Neutralising antibodies</th>
<th>New immune-modulators</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Alleviate symptoms</td>
<td>• Broad neutralisation of viruses</td>
<td></td>
</tr>
<tr>
<td>• Potentially modify disease</td>
<td>• High-avidity, pan-specific</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Attractive product profile</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Boost immune response</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Stop symptoms</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Reduce virus spread</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Orally available</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Variant-agnostic</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Applicable to different viruses</td>
<td></td>
</tr>
</tbody>
</table>

Tailored programmes for each threat

- Corona viruses
- Influenza viruses
- CCHF viruses
- Nipah viruses
- Lassa viruses

Pre-development of new and effective therapeutics to clinical Phase II-readiness leads to time-saving of up to five years in the next pandemic

\(^1\) https://www.who.int/emergencies/diseases/en/
\(^2\) https://www.who.int/activities/prioritizing-diseases-for-research-and-development-in-emergency-contexts
AI, latest antibody design and efficient manufacturing

Next-generation antibody technologies for efficient Rapid Response actions at grasp

Possible reduction of development time from virus sequencing to clinical Phase I/II down to six months

1 2 3 4 5 6
Outbreak Sequence Antibody development Phase I/II

Combination of AI¹, antibody design and efficient cell culture leads to optimised product profile

New J.POD® manufacturing process allows fast and cost-efficient antibody production

Traditional method

J.POD®

¹ Artificial intelligence
PRROTTECT will optimise pandemic prevention

Ambition to have first therapeutics ready for Phase II available as early as 2022

Preparedness

New therapies showing high efficacy and ready for Phase II to be expected from 2022 onwards

<table>
<thead>
<tr>
<th>2022</th>
<th>2023</th>
<th>2024</th>
<th>2025</th>
<th>2026</th>
<th>2027</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corona</td>
<td>Corona</td>
<td>CCHF Nipah</td>
<td>Lassa</td>
<td>Influenza</td>
<td>CCHF Nipah Lassa</td>
</tr>
</tbody>
</table>

Rapid Response & Manufacturing capacities

Expansion of technology - and J.POD® production platforms by 2024 (est.)

<table>
<thead>
<tr>
<th>2022</th>
<th>2023</th>
<th>2024</th>
<th>2025</th>
<th>2026</th>
<th>2027</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technology Platform</td>
<td>J.POD®</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
J.POD® 1 in US opening this year

State-of-the-art manufacturing facility for biologics

- 12,077 square meter production site
- Cost-effective ‘PODular’ production processes that can be reconfigured for flexibility
- PODs already installed
- Certificate of Occupancy in May (employees on site)
- Production from a few kilograms to metric tons in the same facility
- Fully operational in November 2021

Aerial view of new location in Redmond, Washington, US
Europe is the second-largest market for biologicals, local capacities to secure supply are urgently needed

J.POD® 2 EU in Toulouse creates operational efficiency and design for multi-modality biological treatments

Strong support from the French government, the Occitanie region, Bpifrance, the Haute-Garonne prefecture as well as Toulouse Métropole

Two hectares of land at Campus Curie already identified and design plan started

Opportunity to build global J.POD® network to meet future demand for PRROTECTive biologics

New manufacturing options to avoid drug shortage needed

Campus Curie home for new J.POD® showcases next-generation options

1) Dependent of local plannings, environmental and building requirements as well as further conditions